3.68 \(\int \frac {\sqrt {d-c^2 d x^2} (a+b \cosh ^{-1}(c x))}{x} \, dx\)

Optimal. Leaf size=213 \[ \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {2 \sqrt {d-c^2 d x^2} \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {c x-1} \sqrt {c x+1}}+\frac {i b \sqrt {d-c^2 d x^2} \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {c x-1} \sqrt {c x+1}}-\frac {i b \sqrt {d-c^2 d x^2} \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {c x-1} \sqrt {c x+1}}-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {c x-1} \sqrt {c x+1}} \]

[Out]

(a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)-b*c*x*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)-2*(a+b*arccosh(
c*x))*arctan(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)+I*b*polylog(2,-
I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)-I*b*polylog(2,I*(c*x+(c*
x-1)^(1/2)*(c*x+1)^(1/2)))*(-c^2*d*x^2+d)^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.52, antiderivative size = 213, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {5798, 5743, 5761, 4180, 2279, 2391, 8} \[ \frac {i b \sqrt {d-c^2 d x^2} \text {PolyLog}\left (2,-i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {c x-1} \sqrt {c x+1}}-\frac {i b \sqrt {d-c^2 d x^2} \text {PolyLog}\left (2,i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {c x-1} \sqrt {c x+1}}+\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {2 \sqrt {d-c^2 d x^2} \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt {c x-1} \sqrt {c x+1}}-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {c x-1} \sqrt {c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x,x]

[Out]

-((b*c*x*Sqrt[d - c^2*d*x^2])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])) + Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]) - (2*
Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])*ArcTan[E^ArcCosh[c*x]])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (I*b*Sqrt[d
- c^2*d*x^2]*PolyLog[2, (-I)*E^ArcCosh[c*x]])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (I*b*Sqrt[d - c^2*d*x^2]*PolyLo
g[2, I*E^ArcCosh[c*x]])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4180

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c
+ d*x)^m*ArcTanh[E^(-(I*e) + f*fz*x)/E^(I*k*Pi)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*
Log[1 - E^(-(I*e) + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e)
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 5743

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*
(x_)], x_Symbol] :> Simp[((f*x)^(m + 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n)/(f*(m + 2)), x
] + (-Dist[(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/((m + 2)*Sqrt[1 + c*x]*Sqrt[-1 + c*x]), Int[((f*x)^m*(a + b*ArcCo
sh[c*x])^n)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x] - Dist[(b*c*n*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f*(m + 2)*S
qrt[1 + c*x]*Sqrt[-1 + c*x]), Int[(f*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e
1, d2, e2, f, m}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] &&  !LtQ[m, -1] && (RationalQ[m] |
| EqQ[n, 1])

Rule 5761

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]
), x_Symbol] :> Dist[1/(c^(m + 1)*Sqrt[-(d1*d2)]), Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[c*x]], x] /
; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[n, 0] && GtQ[d1, 0] &&
 LtQ[d2, 0] && IntegerQ[m]

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{x} \, dx &=\frac {\sqrt {d-c^2 d x^2} \int \frac {\sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )}{x} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {\sqrt {d-c^2 d x^2} \int \frac {a+b \cosh ^{-1}(c x)}{x \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int 1 \, dx}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {-1+c x} \sqrt {1+c x}}+\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {\sqrt {d-c^2 d x^2} \operatorname {Subst}\left (\int (a+b x) \text {sech}(x) \, dx,x,\cosh ^{-1}(c x)\right )}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {-1+c x} \sqrt {1+c x}}+\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {2 \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{\sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (i b \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \log \left (1-i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (i b \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \log \left (1+i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {-1+c x} \sqrt {1+c x}}+\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {2 \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{\sqrt {-1+c x} \sqrt {1+c x}}+\frac {\left (i b \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {\left (i b \sqrt {d-c^2 d x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{\sqrt {-1+c x} \sqrt {1+c x}}\\ &=-\frac {b c x \sqrt {d-c^2 d x^2}}{\sqrt {-1+c x} \sqrt {1+c x}}+\sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )-\frac {2 \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{\sqrt {-1+c x} \sqrt {1+c x}}+\frac {i b \sqrt {d-c^2 d x^2} \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {-1+c x} \sqrt {1+c x}}-\frac {i b \sqrt {d-c^2 d x^2} \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{\sqrt {-1+c x} \sqrt {1+c x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.91, size = 233, normalized size = 1.09 \[ a \sqrt {d-c^2 d x^2}-a \sqrt {d} \log \left (\sqrt {d} \sqrt {d-c^2 d x^2}+d\right )+a \sqrt {d} \log (x)+\frac {b \sqrt {d-c^2 d x^2} \left (i \text {Li}_2\left (-i e^{-\cosh ^{-1}(c x)}\right )-i \text {Li}_2\left (i e^{-\cosh ^{-1}(c x)}\right )-c x+c x \sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x)+\sqrt {\frac {c x-1}{c x+1}} \cosh ^{-1}(c x)+i \cosh ^{-1}(c x) \log \left (1-i e^{-\cosh ^{-1}(c x)}\right )-i \cosh ^{-1}(c x) \log \left (1+i e^{-\cosh ^{-1}(c x)}\right )\right )}{\sqrt {\frac {c x-1}{c x+1}} (c x+1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/x,x]

[Out]

a*Sqrt[d - c^2*d*x^2] + a*Sqrt[d]*Log[x] - a*Sqrt[d]*Log[d + Sqrt[d]*Sqrt[d - c^2*d*x^2]] + (b*Sqrt[d - c^2*d*
x^2]*(-(c*x) + Sqrt[(-1 + c*x)/(1 + c*x)]*ArcCosh[c*x] + c*x*Sqrt[(-1 + c*x)/(1 + c*x)]*ArcCosh[c*x] + I*ArcCo
sh[c*x]*Log[1 - I/E^ArcCosh[c*x]] - I*ArcCosh[c*x]*Log[1 + I/E^ArcCosh[c*x]] + I*PolyLog[2, (-I)/E^ArcCosh[c*x
]] - I*PolyLog[2, I/E^ArcCosh[c*x]]))/(Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x))

________________________________________________________________________________________

fricas [F]  time = 0.60, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-c^{2} d x^{2} + d} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}}{x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)/x, x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.43, size = 394, normalized size = 1.85 \[ -\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {-c^{2} d \,x^{2}+d}}{x}\right ) a +a \sqrt {-c^{2} d \,x^{2}+d}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) x^{2} c^{2}}{\left (c x +1\right ) \left (c x -1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, x c}{\sqrt {c x +1}\, \sqrt {c x -1}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right )}{\left (c x +1\right ) \left (c x -1\right )}+\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) \ln \left (1+i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right )}{\sqrt {c x -1}\, \sqrt {c x +1}}-\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) \ln \left (1-i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right )}{\sqrt {c x -1}\, \sqrt {c x +1}}+\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \dilog \left (1+i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right )}{\sqrt {c x -1}\, \sqrt {c x +1}}-\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \dilog \left (1-i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right )}{\sqrt {c x -1}\, \sqrt {c x +1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x,x)

[Out]

-d^(1/2)*ln((2*d+2*d^(1/2)*(-c^2*d*x^2+d)^(1/2))/x)*a+a*(-c^2*d*x^2+d)^(1/2)+b*(-d*(c^2*x^2-1))^(1/2)/(c*x+1)/
(c*x-1)*arccosh(c*x)*x^2*c^2-b*(-d*(c^2*x^2-1))^(1/2)/(c*x+1)^(1/2)/(c*x-1)^(1/2)*x*c-b*(-d*(c^2*x^2-1))^(1/2)
/(c*x+1)/(c*x-1)*arccosh(c*x)+I*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)*ln(1+I*(c*x+
(c*x-1)^(1/2)*(c*x+1)^(1/2)))-I*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)*ln(1-I*(c*x+
(c*x-1)^(1/2)*(c*x+1)^(1/2)))+I*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*dilog(1+I*(c*x+(c*x-1)^(1
/2)*(c*x+1)^(1/2)))-I*b*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*dilog(1-I*(c*x+(c*x-1)^(1/2)*(c*x+1
)^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -{\left (\sqrt {d} \log \left (\frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {d}}{{\left | x \right |}} + \frac {2 \, d}{{\left | x \right |}}\right ) - \sqrt {-c^{2} d x^{2} + d}\right )} a + b \int \frac {\sqrt {-c^{2} d x^{2} + d} \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))*(-c^2*d*x^2+d)^(1/2)/x,x, algorithm="maxima")

[Out]

-(sqrt(d)*log(2*sqrt(-c^2*d*x^2 + d)*sqrt(d)/abs(x) + 2*d/abs(x)) - sqrt(-c^2*d*x^2 + d))*a + b*integrate(sqrt
(-c^2*d*x^2 + d)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/x, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2}}{x} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(1/2))/x,x)

[Out]

int(((a + b*acosh(c*x))*(d - c^2*d*x^2)^(1/2))/x, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh(c*x))*(-c**2*d*x**2+d)**(1/2)/x,x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*acosh(c*x))/x, x)

________________________________________________________________________________________